3.7.13 \(\int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} (a+c x^2)} \, dx\) [613]

3.7.13.1 Optimal result
3.7.13.2 Mathematica [C] (verified)
3.7.13.3 Rubi [A] (verified)
3.7.13.4 Maple [B] (verified)
3.7.13.5 Fricas [B] (verification not implemented)
3.7.13.6 Sympy [F]
3.7.13.7 Maxima [F]
3.7.13.8 Giac [F(-1)]
3.7.13.9 Mupad [F(-1)]

3.7.13.1 Optimal result

Integrand size = 28, antiderivative size = 354 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=-\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right ) (e f-d g) \sqrt {d+e x}}+\frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \left (\sqrt {c} d+\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f+\sqrt {-a} g}} \]

output
-e*(g*x+f)^(1/2)/(-d*g+e*f)/(-a)^(1/2)/(-e*(-a)^(1/2)+d*c^(1/2))/(e*x+d)^( 
1/2)+e*(g*x+f)^(1/2)/(-d*g+e*f)/(-a)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))/(e*x+d 
)^(1/2)+arctanh((e*x+d)^(1/2)*(-g*(-a)^(1/2)+f*c^(1/2))^(1/2)/(g*x+f)^(1/2 
)/(-e*(-a)^(1/2)+d*c^(1/2))^(1/2))*c^(1/2)/(-a)^(1/2)/(-e*(-a)^(1/2)+d*c^( 
1/2))^(3/2)/(-g*(-a)^(1/2)+f*c^(1/2))^(1/2)-arctanh((e*x+d)^(1/2)*(g*(-a)^ 
(1/2)+f*c^(1/2))^(1/2)/(g*x+f)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(1/2))*c^(1/ 
2)/(-a)^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))^(3/2)/(g*(-a)^(1/2)+f*c^(1/2))^(1/2 
)
 
3.7.13.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.96 (sec) , antiderivative size = 383, normalized size of antiderivative = 1.08 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\frac {2 e^2 \sqrt {f+g x}}{\left (c d^2+a e^2\right ) (-e f+d g) \sqrt {d+e x}}+\frac {i \sqrt {c} \left (\sqrt {c} d+i \sqrt {a} e\right )^2 \arctan \left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (c d^2+a e^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )}}-\frac {i \sqrt {c} \left (\sqrt {c} d-i \sqrt {a} e\right )^2 \arctan \left (\frac {\sqrt {c d^2+a e^2} \sqrt {f+g x}}{\sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \sqrt {d+e x}}\right )}{\sqrt {a} \left (c d^2+a e^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )}} \]

input
Integrate[1/((d + e*x)^(3/2)*Sqrt[f + g*x]*(a + c*x^2)),x]
 
output
(2*e^2*Sqrt[f + g*x])/((c*d^2 + a*e^2)*(-(e*f) + d*g)*Sqrt[d + e*x]) + (I* 
Sqrt[c]*(Sqrt[c]*d + I*Sqrt[a]*e)^2*ArcTan[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g 
*x])/(Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g))]*Sqrt[d 
+ e*x])])/(Sqrt[a]*(c*d^2 + a*e^2)^(3/2)*Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)* 
(Sqrt[c]*f - I*Sqrt[a]*g))]) - (I*Sqrt[c]*(Sqrt[c]*d - I*Sqrt[a]*e)^2*ArcT 
an[(Sqrt[c*d^2 + a*e^2]*Sqrt[f + g*x])/(Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*( 
Sqrt[c]*f + I*Sqrt[a]*g))]*Sqrt[d + e*x])])/(Sqrt[a]*(c*d^2 + a*e^2)^(3/2) 
*Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g))])
 
3.7.13.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {662, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^2\right ) (d+e x)^{3/2} \sqrt {f+g x}} \, dx\)

\(\Big \downarrow \) 662

\(\displaystyle \int \left (\frac {\sqrt {-a}}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}}+\frac {\sqrt {-a}}{2 a \left (\sqrt {-a}+\sqrt {c} x\right ) (d+e x)^{3/2} \sqrt {f+g x}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \left (\sqrt {c} d-\sqrt {-a} e\right )^{3/2} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\sqrt {c} \text {arctanh}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \left (\sqrt {-a} e+\sqrt {c} d\right )^{3/2} \sqrt {\sqrt {-a} g+\sqrt {c} f}}-\frac {e \sqrt {f+g x}}{\sqrt {-a} \sqrt {d+e x} \left (\sqrt {c} d-\sqrt {-a} e\right ) (e f-d g)}+\frac {e \sqrt {f+g x}}{\sqrt {-a} \sqrt {d+e x} \left (\sqrt {-a} e+\sqrt {c} d\right ) (e f-d g)}\)

input
Int[1/((d + e*x)^(3/2)*Sqrt[f + g*x]*(a + c*x^2)),x]
 
output
-((e*Sqrt[f + g*x])/(Sqrt[-a]*(Sqrt[c]*d - Sqrt[-a]*e)*(e*f - d*g)*Sqrt[d 
+ e*x])) + (e*Sqrt[f + g*x])/(Sqrt[-a]*(Sqrt[c]*d + Sqrt[-a]*e)*(e*f - d*g 
)*Sqrt[d + e*x]) + (Sqrt[c]*ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + 
 e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*(Sqrt[c]*d 
 - Sqrt[-a]*e)^(3/2)*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - (Sqrt[c]*ArcTanh[(Sqr 
t[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqr 
t[f + g*x])])/(Sqrt[-a]*(Sqrt[c]*d + Sqrt[-a]*e)^(3/2)*Sqrt[Sqrt[c]*f + Sq 
rt[-a]*g])
 

3.7.13.3.1 Defintions of rubi rules used

rule 662
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_ 
)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^ 
2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] &&  !IntegerQ[m] &&  !Inte 
gerQ[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.7.13.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(10976\) vs. \(2(270)=540\).

Time = 0.47 (sec) , antiderivative size = 10977, normalized size of antiderivative = 31.01

method result size
default \(\text {Expression too large to display}\) \(10977\)

input
int(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.7.13.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11846 vs. \(2 (270) = 540\).

Time = 56.03 (sec) , antiderivative size = 11846, normalized size of antiderivative = 33.46 \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="fricas")
 
output
Too large to include
 
3.7.13.6 Sympy [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\int \frac {1}{\left (a + c x^{2}\right ) \left (d + e x\right )^{\frac {3}{2}} \sqrt {f + g x}}\, dx \]

input
integrate(1/(e*x+d)**(3/2)/(c*x**2+a)/(g*x+f)**(1/2),x)
 
output
Integral(1/((a + c*x**2)*(d + e*x)**(3/2)*sqrt(f + g*x)), x)
 
3.7.13.7 Maxima [F]

\[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\int { \frac {1}{{\left (c x^{2} + a\right )} {\left (e x + d\right )}^{\frac {3}{2}} \sqrt {g x + f}} \,d x } \]

input
integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((c*x^2 + a)*(e*x + d)^(3/2)*sqrt(g*x + f)), x)
 
3.7.13.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/(e*x+d)^(3/2)/(c*x^2+a)/(g*x+f)^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.7.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^{3/2} \sqrt {f+g x} \left (a+c x^2\right )} \, dx=\int \frac {1}{\sqrt {f+g\,x}\,\left (c\,x^2+a\right )\,{\left (d+e\,x\right )}^{3/2}} \,d x \]

input
int(1/((f + g*x)^(1/2)*(a + c*x^2)*(d + e*x)^(3/2)),x)
 
output
int(1/((f + g*x)^(1/2)*(a + c*x^2)*(d + e*x)^(3/2)), x)